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1 INTRODUCTION

From the description of the Compton telescope given previously (Schonfelder
et al., this volume), one can see that the accuracy with which one determines the
position of a cosmic gamma-ray source depends not only on the measurements of
the energy deposited in the upper (D1) and lower (D2) detectors, but also on how
accurately one estimates the (X, Y, Z) positions of each gamma-ray or neutron inter-
action (an event). If nothing were known about the position of each event except in
which module it occured, it would increase the uncertainty in the position of a source
by on the order of 10°. Within each COMPTEL module, one extracts position infor-
mation from comparisons of relative intensities of signals in the photomultipier tubes.
This technique was introduced in the 1950’s for medical imaging by Anger (1958),
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and later was adapted to astrophysical applications (Zych et al. 1983; Schonfelder
et al. 1984; Stacy 1985).

In practice, one cannot obtain exact (X, Y, Z) position information from the
measured PMT signals. First, there are processes which “smear” the signal, such
as statistical fluctuations within the PMTs, or multiple scatterings and partially
absorbed events within the detector modules. Second, as is illustrated in the next
section, the function describing event interaction position, (X,Y, Z), as a function
of the relative intensities of PMT signals, is sometimes multi-valued. Also, this
function is not easily expressed analytically. The problem then becomes to reliably
and rapidly calculate a best estimate of a non-linear, non-analytic, vector-valued
function. This is an ideal application for a neural net. For COMPTEL, we chose to
implement CMAC, a readily available software neural net. This technique gave us
roughly a factor of 20 to 50 improvement in the speed of processing events, compared
to methods that had been tried earlier (McConnell 1990; R. Freuder 1991).

In the next section, we present an overview of the responses of the D1 and D2
detectors. In the third section, we review function approximation and interpolation
as it applies to neural nets. In the final section, we display some results of COMPTEL
D1 and D2 event location.

2 CELL RESPONSE OVERVIEW

2.4 (X,Y) RESPONSE

As part of the overall COMPTEL calibration procedure, a source—plus—
collimator was moved across the top of each COMPTEL module, and the signals
from each PMT were recorded. for about 10% events per position from ~ 10° (X,Y")
positions per module. In Figures 1 and 2, we display contour plots of the D2 and D1
relative PMT responses as a function of (X,Y") position within each module.

If PMT; is the overall signal from the 7** photomultiplier tube, let the PMT
ratio f1; be defined by

PMT;

Rj=N x ——i—,
’ TN PMT:

(1)

where NV is the total number of PMTs in the cell (8 for D1 and 7 for D2).

Figure 1.A and 1.B show contour plots of R; and Rj, the mean PMT ratios
in PMT 1 and PMT 2, calculated from the D2 mapping data. In this figure, PMT 1
is located in the center of the module, and PMT 2 at an angle of ¥ radians from
the +X axis. The D2 R; response resembles a constant plus a Gaussian in 7, the
distance from its center, with width on the order of 5 cm; while the D2 R response

is more asymmetric.

Figure 2.A shows a contour plot of R, the mean PMT ratio for PMT 1, taken
from D1 mapping data. In this mapping data coordinate system, the center of the
face of PMT 1 is located at a radius of 13.5 cm from the center of the module, and
at an angle of -2-1r radians measured counterclockwise from the +X axis (§ from the
+Y axis). The D1 PMT response can be described roughly as the sum of a Gaussian
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Figure 1.A (left). The relative intensity of the signal received in PMT1 (mean
PMT 1 ratio, or R;); and Figure 1.B (right): the relative intensity of the signal
received in PMT2 (mean PMT 2 ratio, or R;), as a calibration source is moved
across a D2 module. Contours range from 0.80 to 1.91 with a contour interval of
0.08. Dashed lines indicate the intensity is less than the median value. Thicker lines
indicate the module edge and the photomultiplier tube faces.

of width ~ 3 cm in r, the distance from the center of the PMT, plus an exponential
in 7 with decay rate of ~ 30 cm. In Figure 2.B we display a cross—section of the D1
PMT1 response around X = 0. (For this figure the mean ratio for PMT 1, R, was
calculated from mapping data points within +7° of the Y-axis.)

2.BZ RESPONSE

Although there was good (X,Y') data, no measurements were available on
Z, the height of each interaction within a module. To indirectly infer Z, COMP-
TEL used a principle components analysis (Finger 1987; Varendorff 1987). Several
thousand events from each (X,Y") collimator position were used to calculate the
covariance matrix of the PMT signals. Then an eigenvector decomposition was per-
formed. For that (X, Y'), the direction of the eigenvector with the greatest eigenvalue
was designated the A direction. In many cases this direction of greatest variation was
associated with Z, the interaction depth (Varendorff 1987; Loomis 1991). In prac-
tice, therefore, COMPTEL event location estimates (X,Y, A) rather than (X, Y, Z)
from the PMT signature.

Since the D1 PMTs are positioned symmetrically on the walls of each D1
module, it is clear there is limited depth information. One expects the PMT re-
sponse to be symmetric in Z about the middle of the cell. For D2 cells, using a
light propogation model originally developed by Zeitlmeir (1988), Loomis (1991) has
demonstrated that interaction height is also not a monotonic function of A and can-

not be unambiguously inferred from the PMT signature. This is displayed in Figure
3.
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Figure 2.A and 2.B. The relative intensity of the signal received in PMT1
(mean PMT 1 ratio, or R;) as a calibration source is moved across a D1 module.
Thicker lines indicate the module edge and the photomultiplier tube faces. Contours
range from 0.56 to 2.86 with a contour interval of 0.08; dashed lines indicate the
intensity is less than the median value. The plot on the right, 2.B, is a cross section
of the contour plot to the left, taken at X = 0.

2.C INCOMPLETE POSITION INFORMATION

In Figure 2.A, notice that the inverse function — the (X,Y") position as a
function of the D1 PMT ratios — will be double-valued near the edges of the cell,
betwen the phototubes. This is illustrated further in Figure 2.B, the cross—section
of Figure 2.A, taken at X = 0 mm. In other words, even for the case of infinite
signal-to—noise, the inverse functions would be ill-defined, so one has incomplete
position information for {X,Y) as well as for Z.

Further, in practice one does not have infinite signal-to-noise. Even when
physical effects such as multiple scatterings and escaping photons and electrons are
ignored, one expects statistical fluctuations in the PMT signals (Engstrom 1980). At
best, one infers a certain probability that an event occurred at (X, Y, A), given the
measured PMT signals. This full probability distribution was deemed too cumber-
some for COMPTEL event processing. One therefore summarizes this information
with a single position estimator, (X*,Y ", A*). Typical estimators can be: the most
probable position, given the PMT signature; the expectation value, which gives the
minimum rms error; the value which maximizes the information entropy, which makes
the fewest assumptions about missing information; or some completely different kind
of estimator. Recall that for non-Gaussian probability distributions, these can give
very different numerical results. A minimum x? search method, such as the one
used previously (McConnell 1991; Varendorff 1987), looks for the most probable po-
sition; while as the neural net tries to minimize the RMS error, it comes closer to
approximating the expectation value of (X,Y, A). Note that for COMPTEL, since
the PMT signature is not a unique indicator of position, one does not expect the
distribution of (X*,Y ™, A*), calculated for a large number of events, to trace out
the true probability of finding an event at (X,Y, A), no matter which estimator is
chosen.
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Figure 3. For D2, interaction height as a function of \ is displayed from
Monte Carlo simulations for four different collimator positions. From Loomis (1991).
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3 FUNCTION APPROXIMATION AND INTERPOLATION

3.A OVERVIEW

Once a position estimator is chosen, to be practical, one needs to find a fast
way of approximating (X™,Y*,\*) as a function of the PMT signals, and of in-
terpolating between the ~ 103 discrete mapping data points. In general, function
approximation and interpolation methods can be classified as either local or non-
local. Non-local methods include expansion in eigenfunctions, such as Fourier series,
or Legendre polynomials. Sometimes one can cleverly choose a basis function so that
the series converges very fast and the approximation is accurate using only a few
terms. Local methods can be more flexible, especially when there is no analytic ex-
pression for the function of interest (or when an analytic expression would take too
long to compute). Local methods include piecewise continuous polynomials, such
as cubic splines. For example, most contour plots of unevenly spaced data (such
as the contour plots in Figures 1, 2, 4, and 5) are produced using a standard two-
dimensional Akima spline algorithm (Clare, Kennison, and Lackman 1987; IMSL
1987; Tennant 1989; and references therein). It requires a look-up table roughly of
dimension twice the number of the data points. Another popular local method is to
sum Gaussians of varying widths. (See, for example, Bendillini 1991.) This approx-
imation is infinitely continous and differentiable, which is sometimes an advantage.
However in some cases it can require storage space for a great many components.
An even simpler algorithm, but one that requires even more storage space, is the
sum of many constant components. For example, if one were to approximate the
one-dimensional function in Figure 2.B by this method, one would divide the Y-axis
into discrete bins and associate a weight A; with the 7t* bin, so that

M=-1
Ri(Y)= > Asryesn (2)

=0

with S(Y) the first bin associated with an input value Y; and the number of bins
M is chosen by the user to give a convenient overlap between adjacent points. Note
that if two inputs, Y7 and Y3, are assigned indexes Sy and S> that are H bins apart,
the number of overlapping bins is:

OVERLAP =max(0,M - H); H =||51 — 52| (3)
Once the weights A; are assigned, this method can be extremely fast.
3.B NEURAL NETS

Of course, all the local methods sketched above can be formulated as Neural
Nets. (See, for example, Poggio and Girosi 1990.) Rather than relying on algorithmic
complexity, the neural network (or connectionist) philosophy emphasizes using many
extremely simple elements, connected together, to represent complicated, non-linear,
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functions. They can be particularly useful when one has many examples but no
analytic form for a function. The local methods described in the previous section are
all classified as single layer localized receptive field networks, with no hidden layer:
Equations 2 and 3 describes CMAC, or Cerebellar Model Arithmetic Computer,
which is the neural net currently used in COMPTEL event location. It gives a real
vector output in response to discrete state (i.e. integer) vector input, from a look-up
table (Miller, Glanz, and Kraft 1990; 1987).

CMAC is categorized as having fized receptive field centers. In practice,
this means that the mapping from the real-valued PMT ratios to integer look-up
table indexes is set ahead of time by the user, independent of the data. For historical

reasons these look-up table indexes are called state vectors S (see Albus 1972, 1975).
COMPTEL currently uses a roughly logarithmic function with the spacing between
bins set by a Scale Parameter. A smaller scale parameter means a smaller bin size,
or finer mesh, is used to map the real-valued input into indexes for the look—up table
of weights Aj; a larger scale parameter implies a larger bin size, or coarser mesh.
For example see Reinhard (1989), Figure 7.1, which uses a scale parameter of .05.

CMAC also uses fized receptive field widths. This means the number of
cells summed to form the approximation, M, is also set by the user when the net is
made, independent of the data. Since one uses a very large number of cells (typically
50,000), as one is training the neural net, one is solving for a large number of
weights, A;. By fixing both the widths and the centers of the receptive fields, one
greatly simplifies the optimization procedure. If all three were free to vary, there is
no guarantee that any training method would converge.

To reduce the large storage space required one maps the table of weights A;j
to a compressed version A’ However CMAC retains the convenient property tha.t

even with multi-dimensional input, two inputs Y1 and Y2 that are close together,

having look-up table indexes 5-'1 and 5-;, will have an overlap of:
OVERLAP = max(0,M - H); H =||5; - S| (4)

This allows some interpolation between adjacent data points. Note that the amount
of overlap depends on both the number of cells to be summed, M, and the mapping

from the real inputs Y to the integer indexes S.

With CMAC the weights A are determined by supervised incremental learn-
ing. All weights in the net are xmtxa.hzed to zero; then pairs of input and output
vectors (termed ezemplars) are presented to the net. For COMPTEL, the inputs
are PMT ratios from the mapping data, and the outputs are the corresponding col-
limator locations. The weights are adjusted to minimize the square of the distance
between the example output vector and its neural net approximation, using a stan-
dard Widrow-Hoff (gradient descent) technique.

Let 5,‘ represent the ith vector-valued input; W the array of weights; X:,- the

ith vector-valued output; f(.i’,W) the estimator of the output; and E7 the total
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Figure 4. Contour plot of (X,Y) position resolution, in mm, across a D1
module. Contours range from 5 mm to 65 mm with a contour interval of 5 mm.
Dashed lines indicate regions with resolution worse than the median. Thicker lines
indicate the module edge and the photomultiplier tube faces.

square error. Then
M - - -
Er=)Y (Xi- f(S, W) (5)
=1

If one were to minimize the total error, one would find an extremum by setting
all components of the gradient of the error ET with respect to the weights W to
zero, and solving the simultaneous equations. In a neural nets context, this is called
batch learning. This involves inverting a very large, sparse, matrix — a numerically
awkward procedure. (COMPTEL currently uses an array of 50000 weights.)

Instead, CMAC uses incremental learning. In contrast with batch learning,
in which the gradient of the total error is set to zero to find an extremum, in stan-
dard Widrow-Hoff incremental learning, one adjusts the weights W based on the

incremental error E; due to the ith exemplar (5}, X;):

—

E; = (X; - f(S;,,W))?,
and
OE;

Wik(i) = Wik(i— 1) - 36

The parameter 3 is called the learning rate, and 0 < # < 1. For the neural nets
used in COMPTEL, B is typically 0.05.
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Figure 5. Contour plot of (X,Y") position resolution, in mm, across a D2
module. Contours range from 10.0 to 47.6 with a contour interval of 5. Dashed lines
indicate regions with resolution worse than the median. Thicker lines indicate the
module edge and the photomultiplier tube faces.

4 RESULTS

Using the neural net method, the root mean square error over the whole
module in (X, Y") location was 25 mm for D1 and 23 mm for D2, while the root mean
square error in A estimation was 0.190 for D1 and less than half that, or 0.085, for
D2, where A ranges from —1 to +1. In Figures 4 and 5 we display contour plots of the
(X,Y) resolution (inmm) across 2 D1 and a D2 module. Notice that the resolution
tends to be best near a photomultiplier tube, and worst around the edges, where
the inverse function (i.e. event position as a function of relative PMT signals) is ill-
defined. (These two figures were made from mapping data, using neural nets trained
on ~ 10° exemplars, with M = 50 cells summmed to form the approximations, and
with Scale parameters of 0.05 and 0.02 for D2 and D1, respectively.)

This is also visible in the scatter plots of event locations displayed in Figures
6 and 7. (These two figures were made using data from a 6 MeV CaF source 10
meters from the telescope, at an angle of 10° from the vertical.) Also, there is scme
slight clustering around the centers of each of the PMTs in both the D1 and D2
modules. This is thought to be due to a tendency of CMAC to broaden sharp peaks
(i.e. overlearning on regions with steep gradients).

Our studies so far indicate that non-uniformities at this level do not seem to
affect the overall COMPTEL angular resolution. In Figure 8, we display a plot of
the Angular Resolution Measure (A.R.M.) distribution, for the 6 MeV data described
above. (The A.R.M is defined as the angular distance between the inferred photon
arrival direction and the true source position.) We show the A.R.M. distribution for
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Figure 8. 6 MeV photopeak A.R.M. distribution, in events per 0.2° bin.

events with total energy of 6 £ 0.1MeV. This effectively includes only gamma-rays
that have deposited their full energy in the D1 and D2 detectors, and is a reason-
able way to observe the effect of just the event location on COMPTEL’s angular
resolution. The one ¢ width is about 0.9°.

Advances in electronic computation can change not only the speed with which
we calculate numeric answers, but also the ways in which we formulate the questions,
and even what kinds of problems are considered interesting to ask. In the use of
“connectionist” techniques such as neural nets, or in Bayesian and Entropic analyses
of the information content of data, are we beginning to see qualitative changes in how
we approach astrophysical data analysis? The coming years may be very interesting.
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