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1. INTRODUCTION

As the instrumental resolution of high-energy astronomical experiments in-
creases, the observer is confronted with a ’space of outcomes’ (hereafter dataspace)
with at most a few events per bin (particularly if time resolution comes into play).
This implies that the sought signal is not only contaminated by additive noise compo-
nents (e.g. instrumental, earth’s atmosphere), but is also masked by relatively large
intrinsic statistical fluctuations. In the case of the 1-30 MeV imaging telescope COMP-

TEL, the number of counts per bin is of the order 1, if the full resolution is to be
explored.

The canonical approach to data analysis in such a situation is to model the
probability distribution (pdf) of the measured quantities, based on knowledge of the
instrumental response and photon intensities. Such models may contain free param-
eters (say ) which one wants to constrain by the experimental result (in our case
e.g. source position or flux). For any such set of parameters, one may calculate the
probability of the measurement at hand. If one considers this probability as a func-
tion § for a given experimental result, the appropriate name is likehood function and
is denoted by L(6). Given two hypotheses Hy and H; (which may differ only in pa-
rameter values), the likelihood ratio L(Ho)/L(Hy) is to be interpreted as the degree
to which the data support Ho against Hy (Edwards, 1972). It is evident that the like-
lihood ratio is a convenient statistic for composite hypothesis testing and parameter

estimation. In this paper we shall overview some of its properties and its application
to y-ray astronomy.
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In section 2 we briefly outline the interpretation of test-statistics in general, and
discuss how the likelihood ratio method (LRM) can be applied in practice . We briefly
describe the COMPTEL dataspace in section 3, and present some preliminary results
of the method for COMPTEL (based on Monte Carlo simulations of the dataspace)

in section 4.

2. BASIC THEORY

In general, the observer postulates a model of reality, which summarizes his a
priort knowledge. This is translated into a probability distribution function (pdf) for
the anticipated events encountered in the experimental set-up at hand. In astronomy
the straightforward approach is to make an input intensity model map (composed of
a finite number of well defined components) and fold it with the point-spread function

of the telescope. A particular set of parameters defining the model map constitute a
simple hypothesis, H.

[t is customary to divide dataspace into bins for computational convenience and
to allow for certain well-known distribution-free tests. Although this implies a small
loss of information, it will not significantly affect parameter determination as long
as the coordinates defining the dataspace (e.g. time, angular position, energy) are
binned according to the corresponding instrumental resolution. For example, if the
number of events per bin is larger than ~ 10, we may apply the minimum x? test
(scc e.g. Lampton et al., 1976) for paramecter estimation, tacitly assuming a gaussian
distribution of the number of cvents per bin.

Generally, the model will predict a certain continuum intensity for the number
of photons per time unit per bin, say A;(8) where i denotes the bin number. If the
events have no "memory” then the probability of finding n; counts after integration
time T is distributed like P(n;) = e exp(—e;)/n;!, where ¢; = A\;T. If the probability
for bin j is independent of the probability for bin i (V1, j ), we can straightforwardly
assign a likelihood to a dataspace of n bins under a given hypothesis H:

n

L({rn:}|H) = [T e} exp(—e;)/ns! (1)

1=1

We tend to express most believe in those hypotheses which maximize L. Such a max-
imum will be denoted by L, and the corresponding (maximum likelihood-) estimates
of the involved parameters 6 by §. It is here that parameter estimation and model
testing (following the terminology of Cash (1979)) seemingly go separate ways. In
principle, model testing may incorporate the determination of L under various func-
tional shapes, e.g. power law versus exponential energy density spectrum. Parameter
estimation concentrates on the variation of L (or another statistic) with  under an
accepted model ”shape”, thereby introducing a 'Bayesian preference’ towards the an-
ticipated models (Eadie et al., 1971). However, in the practical cases encountered
the Bayesian approach leads to a confusion between model and parameter estimation.
To illustrate this, consider a pdf of the shape >k arSi, where the a; are the ampli-
tudes of various shapes S;. The Sy may be rooted in physically different processes
(e.g. pulsar radiation versus diffuse emission) and themselves contain other free pa-
rameters. One tends to consider that estimate of a; which maximizes L as the "best”
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estimate, say . From a non-Bayesian point-of-view we cannot truly derive the prob-
ability distribution of L for we do not know the true a; and so we cannot assign a
statistical sxgmﬁcance to the result. However, one may derive the pdf of the a; for
supposedly true aj, P(ak|ak) and accept only those af for which P is larger then
a certain value (defining the confidence interval for af). In the above example this
literally means generating confidence intervals on independent models, thus blurring
the distinction between model and parameter estimation. The conservative approach
to the decomposition problem is to use Occam’s razor: starting out from the most
simple hypothesis that one still has believe in (Hp) towards more and more complex
hypotheses. The LRM, although computationally slow for large dataspaces, is ideal
to do the job in the case of a small number of events per bin (non-gaussian distribu-
tion) and simultaneously allows for model testing and parameter estimation. Let the
general hypothesis H, involve p undetermined parameters, § = (61,...,6,). Suppose
that the true values of ¢ parameters are 3; (implicitly assuming that the functional
shape of Hj is appropriate). Although these values are unknown, we formally intro-
duce a ”sub-hypothesis” H, which is H, with the former g-parameter values set to
their true values. The likelihood ratio R(q) is defined by

R(q) = L({n:}|Hy)/ L({ni}|H,) (2)

Obviously, R > 1 because H, includes the most likely H,. The theorem of Wilks
(1938,1963) establishes that A = 2log R(g) will adopt a x? probability distribution
with ¢ degrees of freedom as ), n; — oo. For simple hypothesis testing, the X statistic
provides the most powerful test. So the procedure will be:

a. State the most simple hypothesis (Ho) which one has confidence in (in the
example above for instance, put a; = 65 so that all but model component ! are
excluded). This fixes ¢ paramecters of the general hypothesis H,.

b. Next state a more complex hypothesis (H;) which incorporates Hy and which
specifies r parameters of Hy, f = ¢ —r > 0.

c. Calculate R(f) = L({n:}|H1)/L({ni}|Ho). If Hp is true, A will have a X -pdf
so that it is highly unlikely to find a value much in excess of ~ 2f. If we 1eJect
Hp when A > A the confidence level is P2 F < Ac).

d. If we reject Hy, we generate confidence intervals on the maximum-likelihood
estimates of the f parameters by putting Hy = H1(87+66;) and H; = H(6). If
r of the 66, are non-zero, Hy=true implies X = 2log L({n;}|H,)/ log L({n;}| Ho)
has a x2-pdf and we will accept those 66 for which it is not too unlikely to find
§ as maximum likelihood estimates.

The above procedure again illustrates the full equivalence of model and pa-
rameter estimation from the likelihood perspective. Obviously, having accepted H,
the procedure may be repeated (with more complex hypotheses) if there is a phys-

ical reason to do so and if simultaneously a statistically significant improvement is
achieved.

The LRM was succesfully applied in the analysis of the observations made by
the y-ray telescope COS-B (E ~ 50 MeV —5GeV). At first it was used to confirm the
detection of extragalactic y-ray sources (Pollock et al., 1981). It later proved to be a
convenient method for studying the properties of the galactic diffuse y-ray emission
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(Lebrun et al., 1983; Bloemen et al., 1986; Strong et al., 1988; Bloemen 1989) and
the superimposed point-like sources (Pollock et al., 1985).

However, the COS-B dataspace could be described in 2 dimensions so that
the input sky image was of the same dimension as the dataspace. In the case of
COMPTEL, 3 dimensions are in principle required due to the nature of the measured
quantities (see below). The complexity of the resulting dataspace makes a study of
the likelihood method results based on simulations desirable.

3. COMPTEL DATASPACE

The Compton telescope is described in detail elsewhere in these proceedings
(Schénfelder et al.; Dichl et al). The instrument utilizes the most efficient y-matter
interaction process at few MeV energies for light nuclei, namely Compton scattering.
This scattering takes place in the first layer of scintillator detectors D1 (the 'lense’)
after which the scattered photon is absorbed in an underlying layer of detectors D2
(the "film’). The Compton scattering is that part of the telescope response which
allows for imaging, as it is direction sensitive. However, because for unpolarized
photons the corresponding cross-section depends only on the scatter angle and not on
its azimuth, the reconstruction of the underlying image is not straightforward.

If the energy deposit in D1 is E} and in D2 is Es, Comptel’s formula for the
scatter angle ¢ reads

- ” 1
cos o =1—rmc” <EL2 - E) where E, = E; + Es (3)

{m 1s the electron rest mass). The photon interaction positions inside the detectors are
combined into a vector 7@ the direction into which the photon has been scattered. The
cone centered on 7 with opening angle 26 is the collection of possible photon arrival
directions. If we map the sky in an arbitrary spherical coordinate system, denoted by
(x.v) (which could be for example equivalent to (1,b)), the cone projects as a circle
centered on the direction (x(7), (7)) with angular radius ¢. However, for every source
a range of ¢ will occur (distributed according to the Klein-Nishina cross-section) and
to exploit this degrec of freedom ¢ is added as the third dimension of the dataspace in
which each photon may now be described by (x, ¥, ¢). If we take the origin of (x, )
somewhere near the COMPTEL pointing axis, then for the photons of interest we can
usc the 'locally flat approximation’ (LFA): if the source is at (xo,%0) and not much
more than ~ 10° from the pointing axis, ¢ =~ v/(x — x0)? + (¥ — ¥0)2. In the LFA, the
dataspace response to a source is an event-cone with apex at (xo, o), running at an
angle of 45° with the (x, ¥)-plane. Because of the finite resolution in 7 (event location
within the modules) and in ¢(E;, E,), the cone transforms into a mantle. For each
energy E, this mantle defines the PSF, and is denoted by f(x, ¥, ¢; X0, %0, E4)- In the
LFA the PSF dependency on the image coordinates is only through (x — x0,% — %0)-
The effective area for COMPTON scattering may be calculated for a given pointing
direction and photon arrival direction (x',¥'), say A(x',¢'; Ey) . Because of the finite
dimensions of the instrument only a fraction of the scattered photons is absorbed in
D2 with geometrical absorption probability g(x, ). The expected number of events
for integration time T invoked by a mono-energetic sky intensity distribution I{x', ')
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can be written as
é(x,%, %) =9(X,¢)/ dy' d' (X', ¢ ) A )T F ¥, 63 X', ') (4)

where explicit reference to energy has been dropped. If we denote a dataspace bin by
d, a sky pixel by s and the exposure AT by X, the discretized form of (4) becomes

&(d) = g(d) ) _ f(d, $)I(s)X(s) ()

Additional dataspace structures, such as due to background lines (activated within
the instrument) and random coincidence photons, can in general not be cast in the
form of equation (5). If we assume that we can use a time averaged shape for this
contribution (B) in reducing data of a given exposure, the final expectation value
becomes e(d) = &(d) + apB(d), where ap can be adopted as a free parameter. Com-
plicated dataspace selections, which must exclude most of the events arriving from
the earth’s atmosphere, can in principle be incorporated in the matrix g, so that the
dataspace description is not altered. If all detectors are active and no explicit datas-
pace selections are required, g does not depend on ¢ and is given by the function
displayed in figure 1. The dataspace response to an on-axis point source at 6.13 MeV
is given in figure 2 (based on the emperically derived PSF (Strong, 1990)). Note that
the probability density is still significant at large 4, so that a typical dataspace for a
single pointing contains contributions of a sky image of the size ~ 150° x 150°.
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Fig. 1. The variation of the geometry function g with (x,) when COMPTEL
points towards (x, %) = (0,0). The fluctuations reflect the positions of the 7 D1 and 14
D2 detectors (see Diehl et al., this volume). Contour levels at n x 0.48, n = 1,...,10.
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Fig. 2. A cut along ¥ = 0 of the dataspace response (e(x, ¥, ¢) in the text) for
an on-axis source at 6.13 MeV. Contour levels at n x 0.16, n = 1,... , 10.
4. RESULTS

We simulated dataspaces for arbitrary model intensities, because calibration
data have limited use for the verification of the applied LRM to flight data: the signal-
to-noise ratio is large and the sources do not appear as ideal point sources because
of their finite distance (e.g. Strong et al., this volume). Furthermore we want to be
able to control our input image completely. The simulation is based on equation (5),
however without the LFA (sec section 3). The LRM starts from an a priori prediction
of the dataspace event density due to galactic diffuse and instrumental emission, say
M,. We test for the presence of a source and if significant, add it to the model.

We can summarize this by, using the notation of the previous sections, writing the
expectation per dataspace bin as

[ SiMy(d) if H
e(d) = { SiMl(d) +52f(d, 5)g(d) if H (6a).

Sy is the scaling of the background distribution, S, is the source strength (pro-
portional to the exposure) and § is the assumed source position (x0,%0). If we cal-
culate A for each 3, we obtain a likelihood ratio map A(5). If there is no source,
then the max A(§) = Amax is distributed in a classical interpretation as x? so that we

s

have a 99% confidence detection if Apax > 11.3. If we accept Hi, confidence levels
can be generated on both the source position and the source flux. A source which is
significant 'beyond reasonable doubt’ will be added to the background model at the
most likely position (say 3), with its flux as a free scaling parameter.
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Fig. 3. A sample A map for a single simulation; contour levels start at 8.8 with

steps of 7.8. For details, see text.

The updated hypotheses become:

e(d) = {SlMl(d)+52M2(d) if Hy
— \ SiMi(d) + S2Ma(d) + S3f(d, 8)g(d) if Hy

where M>(d) = g(d) f(d, 3).

(60),

The simulations were done with the emperically determined PSF at 6.13 MeV,
and counts are typical for the integrated energy range of 3 to 12 MeV. The background
is estimated mainly from balloon-flights (see e.g. Schonfelder et al., 1980) and prob-
ably comprises about 10° photons for the quoted energy range and a full observation
period (~ 4x 10° sec effective integration time). The dataspaces used for the likelihood
results are 79° x 79° x 40° in (x, ¥, ¢) with 1° bins along each dimension. The likeli-
hood ratio map displayed in figure 3 is for a simulated on-axis source (corresponding
to (x,¥)=(0,0)), with about 1100 source counts whereas the ~ 10° background counts
are distributed as they would be for an isotropic sky (Ig(s) = constant). About 6000
source counts would approximate the number expected for the Crab total emission
from 3 to 12 MeV for a single pointing. Ofcourse, since the data are not consistent
with Hy, the distribution of A in these examples is dictated by the source position and
strength instead of by x? statistics. The formal resolution obtained, for 1% source
counts on about 10° counts in total, is about 2° if we adopt a 99% confidence level.
The resolution quickly improves with the number of source counts. For instance, for
6% source counts it is ~ 0.3°. For such a well-resolved source, the relative error in
flux is characteristically less than 0.05.

A likelihood ratio map for a simulation of 2 sources, each containing about 3000
counts on an isotropic background of the same strength as above, is given at left in
figure 4. Note that the simulated events exhibit statistical fluctuations, so that the
A-map is not symmetrical with respect to the y = 0-axis. The sources are separated
by 6 degrees, both are 3 degrees off-axis.
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Fig. 4. Left: A\-map for 2 sources, at (x,1)=(-3,0) and (3,0) respectively; levels
start at 127, increment=35. Right: A-map for the same 2 sources, but with one source
included in the background model; levels start at 44, increment=26. Details are in
the text.

The applied model hypotheses are given by equation (6a), which we know is
wrong for this case, but still there is a clear indication of extended emission which is
not consistent with the expectation for a single localized source.

Suppose we knew about a potential y-ray source near the x = +43° position.
This would lead us to update the model to that given by equation (6b), with § = (3,0).
We then find the remaining source with the proper number of counts (2800 + 125)
and at the right position, as we can see from the map at right shown in figure 4.

If we take the simulated data of figure 3, and apply the 4.43 MeV PSF as f
in (6a), we find that the likelihood ratios have dropped characteristically by about
30%, but the formal angular resolution and source flux are consistent with the results
described above. We therefore conclude that at least in this energy range, the derived
source parameters are relatively insensitive to energy.

5. CONCLUSIONS

The success of previous applications of the LRM in «-ray astronomy invites a
similar approach to COMPTEL data. To verify if the method works and converges
for the latter data, we presented results based on simulations of the COMPTEL
dataspace. These results also allow us to anticipate the kind of likelihood ratios we
may expect for realistic source detections. This is useful because in general we only
have a very global a priort model Mp and we do not accurately know the behaviour
of the likelihood ratio statistic in the presence of additional unknown sources. The
simulated results in principle can tell us, for a given total number of counts, how a
A value corresponds to a signal-to-noise ratio, so that we have a reference model for
interpretating flight-data.
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